个人简介:
金潮渊,浙江大学”百人计划”研究员、博士生导师、国家青年人才项目入选者、国家重点研发计划项目首席科学家。主要研究基于半导体量子点材料的集成光电芯片和光量子芯片,包括高速激光器、单光子源、全光调制器、微波光子器件等。他在国内外学术期刊上发表研究论文70余篇,以第一作者/通讯作者身份发表Nature Nanotechnology, APL, IEEE, OE, OL, PRB等一流学术期刊论文。半导体中自发发射过程的超快控制入选美国光学学会年度进展并登上专题封面(2014)。曾获得日本学术振兴会研究员(2008)、日本学术振兴会桥梁学者(2017)、英国谢菲尔德大学校长研究员(长聘讲师,2015)、浙江省特聘专家(2018)等荣誉称号。现担任浙江大学竺可桢学院专业导师和“新时代人才培养战略伙伴中学”主讲专家。
近年来,作为项目首席科学家主持国家重点研发计划项目“面向规模集成的高效硅基光波导放大器和激光器”,发展硅基有源器件的芯片集成技术;主持国家自然科学基金面上项目2项,发展基于光子晶体微腔的激光器技术;作为项目骨干成员深度参加欧盟Horizon 2020 FET项目和英国EPSRC标准项目各1项,通过国际合作推动基于激光干涉分子束外延的量子点阵列外延技术。与国内多家企业开展产学研合作,有力地促进了国内光电子核心芯片制造的关键技术水平,荣获中国产学研合作创新奖(2022)。
个人履历:
时间 | 学校 | 职位 | 主要研究方向 |
1996 – 2000 | 南京大学 | 物理学(微电子)本科 | |
2000 – 2003 | 中国科学院半导体研究所 | 微电子学与固体电子学硕士 | 半导体光放大器 |
2004 – 2008 | 英国谢菲尔德大学 | 电子与电气工程博士 | 量子点激光器 |
2008 – 2010 | 日本神户大学 | 日本学术振兴会研究员 | 垂直腔光开关/光调制器 |
2010 – 2013 | 荷兰埃因霍温理工大学 | 博士后 | 微腔单光子源 |
2013 – 2015 | 荷兰EFFECT Photonics公司 | 资深科学家 | 100/400G光子集成芯片 |
2015 | 中国科学院半导体研究所 | 研究员 | 微腔激光器 |
2015 – 2017 | 英国谢菲尔德大学 | 校长研究员 | 超快光子学 |
2017 至今 | 浙江大学 | 百人计划研究员 | 超快光子学 |
浙大主页:https://person.zju.edu.cn/uphotonics
2020
Direct patterning of periodic semiconductor nanostructures using single-pulse nanosecond laser interference
Y.R. Wang, S.M. Olaizola, I.S. Han, C.Y. Jin, M. Hopkinson
Optics Express, Vol. 28, pp. 32529-32539,2020.
Photonic integration of uniform GaAs nanowires in hexagonal and honeycomb lattice for broadband optical absorption
S. Behera, P.W. Fry, H. Francis, I. Farrer, C.Y. Jin, M. Hopkinson
AIP Advances 10, 105211,2020.
In situ pulsed laser interference nanostructuring of semiconductor surfaces
Y.R. Wang, I.S. Han, C.Y. Jin, M. Hopkinson
JLMN-Journal of Laser Micro/Nanoengineering, vol.15, 2020.
Precise arrays of epitaxial quantum dots nucleated by in-situ laser interference for quantum information technology applications
Y.R. Wang, I.S. Han, C.Y. Jin, M. Hopkinson
ACS Applied Nano Materials, vol.3, pp.4739-4746,2020.
Control of Q factor in laterally-coupled vertical cavities
S. Chen, H. Francis, H.C. Hua, K.J. Che, Y.R. Wang, M. Hopkinson, S.Y. Zhang, C.Y. Jin
IET Optoelectron, Vol. 14, pp. 100-103, 2020.
Formation of laterally ordered quantum dot molecules by in situ nanosecond laser interference
Y.R. Wang, I.S. Han, C.Y. Jin
Applied Physics Letters, vol. 116, 201901, 2020.
Broadband, wide-angle antireflection in GaAs through surface nanostructuring for solar cell application
S. Behera, P. W. Fry, H. Francis, C.Y. Jin, M. Hopkinson
Scientific Reports, vol. 10, 6269,2020.
In-situ laser interference patterning of MBE growth surfaces
Y.R. Wang, M. Hopkinson, I.S. Han, C.Y. Jin
Laser-based Micro-and Nanoprocessing XIV (vol. 11268, p. 112680U). International Society for Optics and Photonics, 2020.
Directed self-assembly of InAs quantum dots using in situ interference lithography
Y.R. Wang, M. Hopkinson, H.I Sik, S. Behera, C.Y. Jin
Quantum Dots, Nanostructures, and Quantum Materials: Growth, Characterization, and Modeling XVII (vol. 11291, p. 1129107). International Society for Optics and Photonics, 2020.
Fabrication of sub-micrometer periodic nanostructures using pulsed laser interference for efficient light trapping in optoelectronic devices
S. Behera, Y.R Wang, H.I. Sik, C.Y. Jin, M. Hopkinson
Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXV (Vol. 11267, p. 112671B). International Society for Optics and Photonics, 2020.
Generating optical frequency combs via nanoscale photonic structures.
H. Francis, S. Chen, K.J. Che, X.D. Zhang, M. Hopkinson, C.Y. Jin
Physics and Simulation of Optoelectronic Devices XXVIII (Vol. 11274, p. 1127412). International Society for Optics and Photonics, 2020.
Broadband, wide-angle antireflection in GaAs through surface nano-structuring for solar cell applications
S. Behera, P. Fry, H. Francis, C.Y. Jin, M. Hopkinson
Scientific Reports, vol. 10, p. 6269, 2020.
Theoretical modelling of single-mode lasing in microcavity lasers via optical interference injection
L.F. Wang, Y.R. Wang, H. Francis, M.J. Xia, F. Liu, M. Hopkinson, C.Y. Jin
Optics Express, vol. 28, issue 11, pp. 16486-16496, 2020.
Generating optical frequency combs via nano-scale all-optical modulators
H. Francis, S. Chen, K.J. Che, M. Hopkinson, C.Y. Jin
Physics and Simulation of Optoelectronic Devices XXVIII, 1127412, 2020.
2019
Photonic Crystal Cavity-Based Intensity Modulation for Integrated Optical Frequency Comb Generation
H. Francis, S. Chen, K.J. Che, M. Hopkinson, C.Y. Jin
Crystals, pp. 1–10, 2019.